RAG 101: Designing Retrieval-Augmented Generation Pipelines



Large Language Models are impressive—until they hallucinate.
Retrieval-Augmented Generation (RAG) fixes that by injecting grounded context straight into the prompt.
RAG = Search (retrieval) + Reasoning (generation).
In this post you'll learn:
- The building blocks of a RAG pipeline
- Design patterns & trade-offs
- A < 50-line "hello RAG" demo in Python
1. Why Retrieval + Generation?
Challenge: Hallucination
Pure LLM: High
RAG: Grounded answers
Challenge: Domain Freshness
Pure LLM: Fine-tune needed
RAG: Update docs instantly
Challenge: Cost/Latency
Pure LLM: Long prompts
RAG: Retrieve only what's needed
Large Language Models are impressive—until they hallucinate.
Retrieval-Augmented Generation (RAG) fixes that by injecting grounded context straight into the prompt.
RAG = Search (retrieval) + Reasoning (generation).
In this post you'll learn:
- The building blocks of a RAG pipeline
- Design patterns & trade-offs
- A < 50-line "hello RAG" demo in Python
1. Why Retrieval + Generation?
Challenge: Hallucination
Pure LLM: High
RAG: Grounded answers
Challenge: Domain Freshness
Pure LLM: Fine-tune needed
RAG: Update docs instantly
Challenge: Cost/Latency
Pure LLM: Long prompts
RAG: Retrieve only what's needed
2. RAG Architecture at a Glance
┌──────┐ query ┌──────────┐ top-k ┌─────┐
│ User │ ───────► │ Retriever│ ──────► │ LLM │
└──────┘ └──────────┘ └─────┘
▲
│ embeds
┌───────────┐
│ Vector DB │
└───────────┘
Components:
- Vector DB: FAISS, Weaviate, PGVector
- Retriever: Similarity, hybrid BM25 + embeddings
- LLM: GPT-4o, Claude, Llama 3
3. Design Choices & Trade-Offs
Embeddings
Options: OpenAI, e5-large, Instructor
Trade-off: Quality vs cost
Chunking
Options: Fixed / heading-aware
Trade-off: Recall vs context size
k (Retrieval Count)
Range: 3–10
Trade-off: Higher recall ⇒ higher latency & cost
Prompt Style
Options: stuff / refine / map-reduce
Trade-off: Simplicity vs reasoning depth
4. Minimal "Hello RAG"
# Import required libraries
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
# 1. Load documents
docs = TextLoader("docs/").load()
# 2. Create vector store and retriever
store = FAISS.from_documents(docs, OpenAIEmbeddings())
retriever = store.as_retriever(search_kwargs={"k": 4})
# 3. Set up RAG chain
rag = RetrievalQA.from_chain_type(
llm=ChatOpenAI(model_name="gpt-4o"),
chain_type="stuff",
retriever=retriever
)
# 4. Query the system
print(rag.run("What's our refund policy?"))
5. When Not to Use RAG
- Knowledge rarely changes and fine-tuning is cheap
- Answers must be deterministic (e.g., legal citations)
- Latency budgets < 200 ms with no caching wiggle room
Next Article
→ RAG in Practice: Implementing & Tuning a Production Pipeline
Learn about embeddings at scale, evaluation, and a FastAPI reference pipeline
💬 Reach out on LinkedIn or subscribe on Substack for more deep dives.